光子晶体及其三种特性仿真研究

陈 汀

(北京邮电大学 理学院,北京 100876)

摘 要: 光子晶体是一种具有周期性结构分布的人造晶体。学习并研究了借助时域有限差分算法、采用完美匹 配层边界条件仿真光子晶体中电磁场的传播与分布。结合光子晶体较为有趣的三个特性——古斯-汉欣位移、 带隙导波、自准直现象,分别通过 MATLAB 和 COMSOL 进行仿真并比较了结果。研究结论为光波导原理课程,及 进一步对于光子晶体的学习提供了宝贵的经验。

关键词:光子晶体;时域有限差分算法;古斯-汉欣位移;仿真;光波导

中图分类号: TN252 文献标识码: A

The Simulation of the Three Characteristics of the Photonic Crystal

CHEN Ting

(Beijing University of Posts and Telecommunications School of Science, Beijing, 100876, China)

Abstract: Photonic crystal is an artificial type of crystal which is composed with periodic regimes. The finite-difference time-domain (FDTD) numerical calculations method and the perfectly matched layer (PML) boundary conditions are adopted in the simulation of the electromagnetic field distribution in photonic crystal. Goos–Hänchen shift, band-gap waveguide and self-collimation effect are been discussed with both MATLAB and COMSOL software. Experiment results provide guidance for the curriculum of fundamentals of optical waveguides.

Keywords: Photonic Crystal; FDTD Method; Goos-Hänchen shift; Simulation; optical waveguide

在光波导原理(本科)课程的教学中,麦克斯 韦方程组作为分析波导中电磁场分布的最主要工 具贯穿教学过程。然而,电场与磁场在直角坐标系 下共有六个分量,不利于学生直观地想象与理解波 导的知识。本文基于作者对光子晶体最经常被提及 的三种反常现象——古斯-汉欣位移、带隙导波和自 准直现象的极大兴趣进行了研究,并借此机会自学 了 COMSOL 软件的简单用法,学习了如何通过 MATLAB 进行光子晶体模型的建模与 FDTD 分析 与仿真。通过本文的撰写,作者对光波导理论取得 了更为深入的了解。

1 时域有限差分算法(FDTD)简述

时域有限差分法(Finite Difference Time Domain, FDTD)是离散时域求解 Maxwell 偏微分方程组的数值求解方法。计算电磁学领域的时域有限 差分法起源于 20 世纪 60 年代美籍华人 K.S.Yee 提

出 Yee 离散胞元^[1]。FDTD 算法提出之后,随着计 算技术的发展,FDTD 算法在电磁学,电子学,光 学等领域都得到了广泛的应用。本节主要探究 FDTD 算法的求解原理与具体应用条件^{[10][11]}。

1.1 采用 FDTD 算法数值求解麦克斯韦方程组

麦克斯韦方程组在时域中旋度方程包含两个, 即安培环路定律推广和法拉第电磁感应定律:

$$\begin{cases} \nabla \times \vec{\mathbf{H}}(x, y, z, t) = \frac{\partial \vec{\mathbf{D}}(x, y, z, t)}{\partial t} + \vec{\mathbf{J}} \\ \nabla \times \vec{\mathbf{E}}(x, y, z, t) = -\frac{\partial \vec{\mathbf{B}}(x, y, z, t)}{\partial t} \end{cases}$$
(0.1)

其中,存在本构关系式:

$$\vec{D} = \varepsilon_0 \varepsilon_r \cdot \vec{E}$$
$$\vec{B} = \mu_0 \mu_r \cdot \vec{H} \qquad (0.2)$$

在直角坐标系中,电场磁场各可分为三个相互 正交的分量: 电场:

$$\frac{\partial E_x}{\partial t} = \frac{1}{\varepsilon} \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} - \sigma E_x \right)$$

$$\frac{\partial E_y}{\partial t} = \frac{1}{\varepsilon} \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} - \sigma E_y \right) \qquad (0.3)$$

$$\frac{\partial E_z}{\partial t} = \frac{1}{\varepsilon} \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} - \sigma E_z \right)$$

磁场:

$$\frac{\partial H_x}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y} \right)$$
$$\frac{\partial H_y}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial z} \right) \quad (0.4)$$
$$\frac{\partial H_z}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} \right)$$

为了构建空间中的格点, 定义

 $\vec{A} = (i, j, k) = (i\Delta x, j\Delta y, k\Delta z)$

并将时间也离散化取值,从而得到 Yee 元胞 模型。在空间上,各电场分量 Ex, Ey, Ez 在 Yee 元胞的棱边中间取样,方向与棱边一致;各磁场 分量 Hx,Hy,Hz 在 Yee 元胞表面的中间取样,方 向垂直元胞面。在时间上,电场分量在棱边上, 在整时刻离散;磁场分量在元胞面中间,在半时 刻离散。

其模型如下图所示:

图 1 Yee 元胞模型

离散化后可分别写出电场,磁场的各方向分量。篇幅所限,此处仅以一个分量为例,写出其 离散化过程:

$$=\frac{\Delta z}{\frac{E_{z}^{n}(i, j+1, k+1/2) - E_{z}^{n}(i, j, k+1/2)}{\Delta y}} (0.5)$$

根据上述偏微分方程通过离散格点转化为差分的方法,可在 MATLAB 中进行编程迭代,从而数值计算出各个场分量,进而通过数据绘出图像来。

下面给出 FDTD 中格点大小与稳定所需条件。 由于占用篇幅较多,此处仅给出原文中的结论,即 所谓 Courant 稳定性条件:

対于三维空间,有

$$c\Delta t \leq \frac{1}{\sqrt{\frac{1}{(\Delta x)^2} + \frac{1}{(\Delta y)^2} + \frac{1}{(\Delta z)^2}}} \quad (0.6)$$
对于二维平面,有

$$c\Delta t \leq \frac{1}{\sqrt{\frac{1}{(\Delta x)^2} + \frac{1}{(\Delta y)^2}}}$$

另外,为保证空间格点足够密集以便准确描述 格点中场的分布,根据奈奎斯特采样定理可简易推 知,采样格点长度应至少满足 $\Delta l \leq \frac{\lambda_{\min}}{2}$ 。由于计 算性能较为充足,此处可采用更密集的采样点。

1.2 完美匹配层(PML)边界条件

完美匹配层条件(Perfectly Matched Layer)是伴随着麦克斯韦方程组的差分算法的出现而诞生的。

由于实际的物理问题,如天线的辐射等问题中,其 一端边界应处于无穷远处。而有限差分的算法显然 无法计算无穷远边界条件。这时,就需要使用完美 匹配层的边界吸收条件了。

参考文献^[2]中给出了 PML 的具体推导方法。篇 幅所限仅摘取其中结论用于 FDTD 编程中使用。本 例中仅仿真二维 TM 波。

图 2 PML 模型示意图

PML的大致含义就是通过将求解区域包围起来,求解区域的电磁场达到 PML 边界中几乎不会反射回到求解区域中,且达到 PML 最外层后电场为0 而被吸收。

根据文献^[3]中的结论,PML 的反射系数为:

$$R = e^{-2\frac{1}{\varepsilon c}\int_{0}^{a} \sigma_{\max}\left(\frac{r}{d}\right)^{2} dr} = e^{-\frac{2\sigma_{\max}d}{3\varepsilon c}} \quad (0.7)$$

从而推出 o max 对应表达式为:

$$\sigma_{\max} = \frac{-3 \cdot \varepsilon \cdot c \cdot \ln(R)}{2 \cdot d} \qquad (0.8)$$

其中 d 为求解格点 dx 距离。将σ max 分别带入八 个 PML 区域的各个迭代式中,即为 PML 吸收边界 条件。本例中采取的边界层数为 N=12,并调整了 反射系数中的常数项以改善其运行速度。

2 光子晶体的三个特性综述

光子晶体诞生以来,其丰富的特性不断被发现。根据其带隙的特性可以制成单一频率的波导、 滤波器件;根据其折射率在布里渊区非线性的特征,可以制成超折射器件等;根据其特殊的周期 性结构分布,还可以观察到古斯-汉欣位移等。本 节将从下列三个方面简述其特性。

2.1 古斯-汉欣位移

根据文献^{[4][5]}中所给出的结论以及课堂讲授的 内容综合来看,对于古斯-汉欣位移的分析尚不够成 熟,多为针对某一特定模型的介质进行分析。

对于波束,其各平面波分量在界面上发生反射 后,会分别获得与入射角相关的相移。其相移大小 满足如下公式:

$$Z_{G-H} = \frac{2 \tan \theta_i}{k_0 n_1 \sqrt{\sin^2 \theta_i - n_2^2 / n_1^2}}$$
(2.1)

然而,可以定性分析的是,对于本例中周期性 分布的光子晶体结构,古斯-汉欣位移的大小是与其 界面的反射率与透射率有关的。根据文献^[6]中的结 论,本模型中的光子晶体界面上古斯-汉欣位移大 小,取决于界面层氧化铝柱的半径。

2.2 自准直

光子晶体自准直效应,是在不引入传统的光子 晶体波导的情况下,光束可以克服衍射发散效应而 显示出几乎完全准直的传播特性。其表现为一发散 的入射波进入光子晶体后,会形成一条准直的传播 路径。1999 年 Kosaka 等人首次在硅工艺光子晶体 中发现自准直现象。根据这一特性,可制成光子晶 体的偏振分束器等。文献^[7]中更加详细地分析了这 一现象的应用价值及形成机理。

2.3 带隙导波

带隙导波模型为一有序排列的二维光子晶体 中去除符合一定图样的晶体柱,填充其它折射率的 介质而形成缺陷。示意图如下

图 3 光子晶体的带隙导波

可以借鉴传统阶跃折射率光纤的导光机理用全 内反射原理对这种光纤进行解释,也可以利用光子 带隙效应来解释。教材^[8]中讲解了如何通过光子晶 体禁带和导带的方式分析这类问题。利用这种光子 晶体可以制作仅对单一频率电磁波导通的波导。

3 仿真结果及分析

本节中将通过仿真上述模型来展现这三种特性的具体表现形式。其中,古斯-汉欣位移与自准 直现象均用 MATLAB 和 COMSOL 一同仿真比 较;带隙导波仅使用 COMSOL 进行仿真。

3.1 古斯-汉欣位移及其仿真

文献^[6]中给出了研究氧化铝二维光子晶体材 料的具体参数和图样。首先,本人根据其给出的 材料几何,在 COMSOL 中建立了一等比例放大 的几何模型。然后,根据其给定的各材料折射率 和其他参数,设定了散射边界条件以及入射 TM 波的初始值。

COMSOL 软件具有自动适应几何划分求解 格点的功能。代入相应频率,求解出与文献中基 本相同的图像。

图 4 光子晶体中不同频率的归一化场分布

图 5 光子晶体中电场模分布,可以明显看出在界面 上产生了古斯-汉欣位移 在 MATLAB 中,同样设置了一矩形光子晶 体模型。折射率以及几何与论文中不同,但同样 能够看到古斯-汉欣位移。

图 6 MATLAB 仿真的古斯-汉欣位移

比较二者可以发现,古斯汉欣位移不仅与边 界上晶体柱的半径有关,也与晶体柱之间的距离 有关。在之后的学习中,本人将继续探究其中更 深层次的原理。

3.2 自准直

文献^[7]中给出了自准直现象场分布的参考图 样。首先,本人设置了类似的矩形光子晶体网格。 然后进行了简单仿真。仿真结果如下图所示。

图 8 MATLAB 仿真的自准直现象, 波源位于图样中心

图 9 COMSOL 仿真的自准直现象,波源位于图样中心 根据另一篇文献^[9]中研究的内容,本人另做了关于不 同结构的光子晶体间自准直光束的投射的仿真。文献中指 出,当两种格点尺寸与密度不同的光子晶体紧密贴近时, 满足一定模式的布洛赫波可以以较低的损耗穿过界面,继 续在另一块光子晶体中传播。

图 10、11 自准直光束穿过界面继续传播,电场模大 小随坐标的变化

可以看出,穿过界面后,电场模值约为原晶体中大小的60%。文献中对这个现象进行了定量实验,但并未给出具体计算式。

3.3 带隙导波

根据 COMSOL 软件提供的有关光子晶体的 材料,绘制了由等距离放置的砷化镓柱组成光子 晶体模型。支柱间的距离可防止某些特定波长的 光传播进入晶体结构。

依靠支柱之间的距离,在特定频率范围内的 电磁波被反射而不能通过晶体传播。这个频率范 围称为光子带隙。通过除去在晶体结构中的一些 砷化镓支柱可以为在带隙频率的光创造一个"通 道",然后光可以沿着这个几何形状的"通道" 传播。利用 COMSOL 软件对该现象进行了简单 仿真,从而熟悉了这个软件的使用方法。

光子晶体。通过图样可以看出,当频率符合带隙频率时, 电磁波才能入射到这条由缺陷构成的通道

电磁波进入光子晶体"通道"后随横轴距离的衰减

4 结语

通过对各种几何、多种问题的学习、探究、推导、仿真,作者对光子晶体这种较新型的材料有了 初步而浅显的认知。光子晶体作为一种存在大量与 传统材料不同特性的材料,针对其的研究近年来已 经广泛开展。

本文通过对其三种最吸引人,也是用传统观念 较难理解的现象进行了数值仿真,得出图样;并结 合近年来关于光子晶体的多种文献尝试了更多的 仿真模型。在仿真过程中,逐渐了解了 FDTD 算法 结合 PML 吸收边界这种差分求解麦克斯韦方程组 的一般方法,并学习了市面上较为常见的、强大的 有限元分析软件 COMSOL 来更简洁地求解关于电 磁场与电磁波的问题。

由于期末时间较为紧张,许多仿真都仅做了较 为简单的情况。但在论文撰写过程中,作者对光子 晶体的一些问题产生了兴趣,希望能够得到老师的 进一步指导。

声明

本文 MATLAB 仿真中关于 FDTD 格点的构建 参考了由小木虫网站提供的例程, COMSOL 仿真部 分参考了中仿科技提供的《COMSOL Multiphysics 中文使用手册》。所有仿真、程序编写均为本人完 成。感谢陈铭书同学提供的 COMSOL 软件拷贝。

参考文献

- K. S. Yee, IEEE Trans. Antennas Propagat. 302-307, 1966, Volume: AP-14
- [2] Berenger J. Perfectly Matched Layer (PML) for Computational Electromagnetics[J]. Synthesis Lectures on Computational Electromagnetics, 2007, 2(1):1-117.
- [3] Hockanson D M. Perfectly matched layers used as absorbing boundaries in a three-dimensional FDTD Code[R]. Technical Report, Umr Emc Laboratory.
- [4] 刘珂宏.光在光子晶体中的传输性质以及 Goos--Hanchen 位移[D].浙江大学, 2013.
- [5] 曹庄琪. 古斯-汉欣(Goos-H(a)nchen)位移的研究[C]// 五省一市光学学会联合年会暨十三省市光学学会联合 年会. 2008:505-508.
- [6] Matthews A, Kivshar Y. Experimental studies of the internal Goos-Hanchen shift for self-collimated beams in two-dimensional microwave photonic crystals[J]. Applied Physics Letters, 2008, 93(13):131901-131901-3.
- [7] 张洁. 光子晶体自准直效应的特性研究[D]. 中国科学 院上海微系统与信息技术研究所, 2007.
- [8] Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic Crystals: Molding The Flow of Light[J]. Computing in Science & Engineering, 1995, 3(6):38 - 47.
- [9] Witzens J, Loncar M, Scherer A. Self-collimation in planar photonic crystals[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(6):1246-1257.
- [10] 方运, 张健, 吴丽莹. 基于混合 PSTD-FDTD 方法的液晶光学特性模拟[J]. 红外与激光工程, 2011(9):1720-1723.
- [11] 汤炳书, 沈廷根. 二维光子晶体透射特性的 FDTD 数 值研究[J]. 半导体光电, 2006, 27(01):45-48.